0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
SUM(nil) → 01(#)
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(x, +(y, z)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(0(x), 0(y)) → +1(x, y)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
+1(+(x, y), z) → +1(y, z)
PROD(app(l1, l2)) → PROD(l1)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(1(x), y) → +1(0(*(x, y)), y)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(cons(x, l)) → +1(x, sum(l))
+1(1(x), 1(y)) → +1(x, y)
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
+1(+(x, y), z) → +1(x, +(y, z))
SUM(cons(x, l)) → SUM(l)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(cons(x, l)) → PROD(l)
*1(x, +(y, z)) → *1(x, z)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
SUM(nil) → 01(#)
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(x, +(y, z)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
+1(0(x), 0(y)) → +1(x, y)
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
+1(+(x, y), z) → +1(y, z)
PROD(app(l1, l2)) → PROD(l1)
*1(1(x), y) → 01(*(x, y))
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(1(x), y) → +1(0(*(x, y)), y)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(cons(x, l)) → +1(x, sum(l))
+1(1(x), 1(y)) → +1(x, y)
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
+1(+(x, y), z) → +1(x, +(y, z))
SUM(cons(x, l)) → SUM(l)
PROD(cons(x, l)) → *1(x, prod(l))
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
PROD(cons(x, l)) → PROD(l)
*1(x, +(y, z)) → *1(x, z)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
SUM(nil) → 01(#)
*1(*(x, y), z) → *1(y, z)
PROD(app(l1, l2)) → PROD(l2)
SUM(app(l1, l2)) → +1(sum(l1), sum(l2))
*1(x, +(y, z)) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → 01(+(+(x, y), 1(#)))
*1(x, +(y, z)) → +1(*(x, y), *(x, z))
+1(+(x, y), z) → +1(y, z)
*1(1(x), y) → 01(*(x, y))
PROD(app(l1, l2)) → PROD(l1)
*1(1(x), y) → *1(x, y)
+1(0(x), 0(y)) → 01(+(x, y))
*1(1(x), y) → +1(0(*(x, y)), y)
APP(cons(x, l1), l2) → APP(l1, l2)
SUM(cons(x, l)) → +1(x, sum(l))
+1(1(x), 1(y)) → +1(x, y)
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
SUM(cons(x, l)) → SUM(l)
+1(+(x, y), z) → +1(x, +(y, z))
PROD(cons(x, l)) → *1(x, prod(l))
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → *1(prod(l1), prod(l2))
*1(x, +(y, z)) → *1(x, z)
*1(0(x), y) → 01(*(x, y))
*1(0(x), y) → *1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(1(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
APP(cons(x, l1), l2) → APP(l1, l2)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APP(cons(x, l1), l2) → APP(l1, l2)
cons2 > APP1
APP1: [1]
cons2: [1,2]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
+1(0(x), 0(y)) → +1(x, y)
+1(1(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(y, z)
+1(1(x), 0(y)) → +1(x, y)
+1(0(x), 1(y)) → +1(x, y)
+1(+(x, y), z) → +1(x, +(y, z))
+1(1(x), 1(y)) → +1(+(x, y), 1(#))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
SUM(cons(x, l)) → SUM(l)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM(app(l1, l2)) → SUM(l1)
SUM(app(l1, l2)) → SUM(l2)
Used ordering: Combined order from the following AFS and order.
SUM(cons(x, l)) → SUM(l)
[SUM1, app2]
SUM1: [1]
app2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM(cons(x, l)) → SUM(l)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM(cons(x, l)) → SUM(l)
cons2 > SUM1
SUM1: [1]
cons2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
*1(*(x, y), z) → *1(y, z)
*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)
*1(*(x, y), z) → *1(x, *(y, z))
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(*(x, y), z) → *1(y, z)
*1(*(x, y), z) → *1(x, *(y, z))
Used ordering: Combined order from the following AFS and order.
*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)
[+, #] > *^11 > *2
*^11: [1]
#: multiset
+: []
*2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*1(x, +(y, z)) → *1(x, z)
*1(1(x), y) → *1(x, y)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(1(x), y) → *1(x, y)
Used ordering: Combined order from the following AFS and order.
*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)
[*^11, 11]
*^11: [1]
+: []
11: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
*1(0(x), y) → *1(x, y)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(x, +(y, z)) → *1(x, z)
*1(x, +(y, z)) → *1(x, y)
Used ordering: Combined order from the following AFS and order.
*1(0(x), y) → *1(x, y)
trivial
*^11: [1]
+2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*1(0(x), y) → *1(x, y)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*1(0(x), y) → *1(x, y)
01 > *^11
*^11: [1]
01: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PROD(app(l1, l2)) → PROD(l2)
PROD(cons(x, l)) → PROD(l)
PROD(app(l1, l2)) → PROD(l1)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD(app(l1, l2)) → PROD(l2)
PROD(app(l1, l2)) → PROD(l1)
Used ordering: Combined order from the following AFS and order.
PROD(cons(x, l)) → PROD(l)
app2 > PROD1
PROD1: [1]
app2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
PROD(cons(x, l)) → PROD(l)
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD(cons(x, l)) → PROD(l)
cons2 > PROD1
PROD1: [1]
cons2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
0(#) → #
+(x, #) → x
+(#, x) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
*(#, x) → #
*(0(x), y) → 0(*(x, y))
*(1(x), y) → +(0(*(x, y)), y)
*(*(x, y), z) → *(x, *(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
app(nil, l) → l
app(cons(x, l1), l2) → cons(x, app(l1, l2))
sum(nil) → 0(#)
sum(cons(x, l)) → +(x, sum(l))
sum(app(l1, l2)) → +(sum(l1), sum(l2))
prod(nil) → 1(#)
prod(cons(x, l)) → *(x, prod(l))
prod(app(l1, l2)) → *(prod(l1), prod(l2))